
557

0022-4715/02/0400-0557/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 107, Nos. 1/2, April 2002 (© 2002)

Numerical Stability Analysis of FDLBM

Takeshi Seta1 and Ryoichi Takahashi2

1 Shizuoka Sangyo University, Department of Business Administration, 1572-1 Ohara, Iwata-
city, Shizuoka 438-0043, Japan; e-mail: c1seta@ssu.ac.jp
2 Shizuoka Sangyo University, Department of Communications and Informatics, Fujieda,
Japan.

Received February 14, 2001

We analyze the numerical stability of Finite Difference Lattice Boltzmann
Method (FDLBM) by means of von Neumann stability analysis. The stability
boundary of the FDLBM depends on the BGK relaxation time, the CFL
number, the mean flow velocity, and the wavenumber. As the BGK relaxation
time is increased at constant CFL number, the stability of the central difference
LB scheme may not be ensured. The limits of maximum stable velocity are
obtained around 0.39, 0.43, and 0.43 for the central difference, for the explicit
upwind difference, and for the semi-implicit upwind difference schemes, respec-
tively. We derive artificial viscosities for every difference scheme and investigate
their influence on numerical stability. The requirements for artificial viscosity is
consistent with the conditions derived from von Neumann stability analysis.
This analysis elucidates that the upwind difference schemes are suitable for
simulation of high Reynolds number flows.

KEY WORDS: Numerical stability; finite difference lattice Boltzmann method;
artificial viscosity; von Neumann stability analysis.

1. INTRODUCTION

In recent years, the lattice gas automata (LGA) (1) or the lattice Boltzmann
method (LBM) (2, 3) has received considerable attention as an alternative
numerical scheme for simulating complex phenomena. The LBM resolved
the problems of the lattice gas automata: it removed statistical noise and
eliminated the spurious invariants in the Navier–Stokes equations. The LB
method could, however, be numerically unstable for high Reynolds number
flows or for thermal problems.



In the LBM, the particle velocity distribution function approaches
towardMaxwell–Boltzmann distribution function equivalent to the maximum
entropy state. In traditional kinetic theory, Boltzmann’s H-theorem ensures
increases of entropy (4) which is indicated by second law of thermodynamics.
If any initial states of the LBM evolve toward an equilibrium state, the
stability can be guaranteed. (5) The LBM, however, cannot usually find an
equilibrium distribution function that can simultaneously guarantee the
H-theorem and recover correct form of macroscopic conservation equa-
tions. (4) For reasons mentioned above, the LBM needs suitable condition to
stably simulate fluid dynamics.
Sterling et al. analyzed the numerical stability of the LBMs for the

incompressible Navier–Stokes equations and reported results as follows: (4)

(1) the BGK relaxation time y must be greater than 12, (2) The limits of the
maximum stable mean flow velocity are around 0.39, 0.42, and 0.47 for a
7-velocity hexagonal, a 9-velocity square, and a 15-velocity cubic lattices,
respectively, (3) as y is increased from 1

2, the maximum stable velocity
increases monotonically until some fixed velocity is reached which does not
change for larger y.
The LBMs were originated from the lattice gas automata (LGA), their

Boolean counterparts. The LBM can also be viewed as a special discretiza-
tion of Boltzmann equation for the discrete-velocity distribution function.
The discrete-velocity gas that is composed of identical particles with velo-
cities restricted to a finite set has been used to solve the Boltzmann equa-
tion by several authors. Broadwell applied two simple discrete-velocity
models to low Mach number Couette and Rayleigh flows. (6, 7) Gatignol
investigated boundary conditions and gas surface interaction with four
coplanar velocities. (8, 9) Nadiga et al. extensively worked on this approach,
and presented a simulation scheme for discrete-velocity gases based on
local thermodynamic equilibrium. (10) Inamuro et al. used discrete-velocity
models, in which molecules have many discrete velocities, for studying
shock-wave structures and heat transfer. (11) Though all these models
utilized the discrete velocity distribution, space and time were continuous.
The LGA involves space and time discretized on a square lattice in addi-
tion to a discretization of the velocity space. (12) Frisch et al. pointed out the
importance of the symmetry of the lattice to obtain correct form of the
Navier–Stokes equation. (1)

Cao et al. proposed the FDLBM that improved the numerical stability
of the LBM. (13) Lattice symmetry and Lagrangian nature of the scheme,
which are used in the LBM, are directly associated with the property of
particle dynamics. On the other hand, the physical symmetry is necessary
for obtaining the correct form of macroscopic momentum conservation
equations from the kinetic equations of the LBM. As shown in Fig. 1, the
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Fig. 1. Schematic of a hexagonal lattice in FDLBM.

FDLBM separates the physical symmetry from the lattice symmetry, so
that the grid size is handled independently of the discrete particle velocity.
Regardless of the magnitude of triangle lattice (i.e., the magnitude of
discrete particle velocity), we can set the grid sizes, Dx and Dy (see Fig. 1).
The FDLBM that utilizes this separation is regarded as the above-men-
tioned discrete-velocity method, although the formulation of the equilib-
rium distribution function is different from the discrete-velocity models. As
is generally known, in both these methods, the physically relevant discre-
tization is that of the velocity space: the discretization of space and time is
a numerical necessity and importantly is not tied to the discretization of the
velocity space.
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The numerical stability of the FDLBM has not been sufficiently
evaluated. The numerical stability of the FDLBM is affected by changing
finite difference approximation which discretizes the evolution equation.
We analyze the stability of the FDLBM discretized by representative finite
difference approximations, that is, the central difference, the explicit
upwind difference, and the semi-implicit upwind difference approximations.
The stability boundaries are shown as function of the CFL number, the
BGK relaxation time, the mean flow velocity, and the wavenumber.

2. FDLBM

In the FDLBM, instead of standard kinetic equation in the LBM, the
following approximated Boltzmann equation for the discrete velocity dis-
tribution function fi:

“fi(x, t)
“t

+ei ·Nfi(x, t)=Wi(x, t), (i=1, 2,..., N) (1)

is calculated with the finite difference method, where ei is the unit velocity
vector along the i th direction in space, N is the number of directions of
velocity, and Wi is the collision operator. t is time variable, and x is space
variable on the lattice. In general, the BGK collision operator,

Wi(x, t)=−
fi(x, t)−f

(0)
i (x, t)

ey
(2)

is applied to Eq. (1), where f (0)i is the local equilibrium distribution func-
tion, y is the relaxation time, and e is a small parameter, proportional to
the Knudsen number. We use the two-dimensional 7-velocity hexagonal
lattice with one rest particle: e0=(0, 0), and moving particles with nonzero
velocity vectors: ei=(cos((p(i−1))/3), sin((p(i−1))/3)), (i=1,..., 6).
The equilibrium distribution function f (0)i is given by a truncated

power series in the local velocity u assuming u ° 1:

f (0)0 =r(h−u
2) (3)

f (0)i =r 1
(1−h)
6
+
1
3

ei ·u+
2
3
(ei ·u)2−

1
6
u22 , (i=1,..., 6) (4)

where h is a constant that determines the distribution of mass between
the moving and nonmoving populations. (14) Hydrodynamical quantities,
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including the density r and momentum rua, are defined through the
moments of the distribution function fi as

C
i
fi=r, C

i
fi(ei)a=rua (5)

Applying the standard Chapman–Enskog procedure (15) to Eq. (1), one
obtains the equation of continuity,

“r

“t
+
“rua
“xa
=0 (6)

and the momentum equations,

“rua
“t
+
“ruaub
“xb

=−
“P
“xa
+
“

“xa
5l
r

“rub
“xb
6+ “
“xb
5m 5“ub

“xa
+
“ua
“xb
66 (7)

where P is the pressure, m and l are the shear viscosity and the second vis-
cosity, respectively. The Greek subscripts a and b denote the space direc-
tions in Cartesian coordinates. The shear viscosity m, the second viscosity l,
and the sound speed Cs are given by m=rey/4, l=rey(2h−1)/4, and
Cs=`

(1−h)
2 , respectively.

3. VON NEUMANN STABILITY ANALYSIS

We analyze the numerical stability of the FDLBM by means of von
Neumann stability analysis. (16) In the von Neumann analysis, the solution
of finite difference equation is written as the familiar Fourier series, and the
numerical stability is evaluated by the magnitude of eigenvalues of an
amplification matrix. The small perturbation Dfi is defined as

fi(x, t)=Dfi(x, t)+f
(0)
i (8)

where f (0)i is distribution function at constant density and flow velocity.
Taking Taylor series expansion of Eq. (1) around the equilibrium value

for certain density and flow velocity, we obtain the following equation,

“

“t
Dfi(x, t)+ei ·N(Dfi(x, t))=1

“Wi

“r

“r

“fj
+
“Wi

“rua

“rua
“fj
2 Dfj(x, t) (9)

The solution may be written as series of complex exponentials,

Dfi(x, t)=F
t
i exp(ikx) (10)
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where F ti is an amplitude at grid point i and time t, i is an imaginary unit,
and k is a wavenumber.
Inserting Eq. (10) into Eq. (9) yields amplification matrix Gi, j as,

F t+Dti =Gi, jF
t
j (11)

The amplification matrix Gi, j is made use of assessing amplification
rate of F ti per time step Dt. If the maximum of the eigenvalues of the
amplification matrix satisfies the following condition:

max |w| [ 1 (12)

for all wavenumbers, the finite difference scheme is determined to be numeri-
cally stable. w is the eigenvalue of the amplification matrix. Equation (12) is
called the vonNeumann condition for stability.
To obtain the second order accuracy, likewise with the conventional

LBM, (17) the FDLBM needs to apply the second order central difference
approximation to Eq. (1). For steep density gradients problem, e.g., shock
waves or interfaces in two-phase flow, the first order upwind difference
scheme leads to stable simulation without any numerical oscillations. From
the above-mentioned reason, we analyze the numerical stability of the three
kinds of FDLB schemes, that is, the explicit central, the explicit upwind,
and semi-implicit upwind difference schemes.
If the explicit central difference scheme is applied to Eq. (1) as

fi(x, t+Dt)−fi(x, t)
Dt

+(ei)a
fi(xa+Dxa, t)−fi(xa−Dxa, t)

2Dxa

=−
fi(x, t)−f

(0)
i (x, t)

ey
(13)

the amplification matrix becomes

Gi, j=11−
ca(exp(ik Dxa)− exp(−ik Dxa))

2
−
Dt
ey
2 dij

+
Dt
ey
1“f (0)i
“r

“r

“fj
+
“f (0)i
“rua

“rua
“fj
2 (14)

where dij is the Kronecker delta function. Similarly, if the explicit upwind
difference scheme, which utilizes the forward time difference and the
upwind space difference, is applied to Eq. (1) as
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(ei)a \ 0:

fi(x, t+Dt)−fi(x, t)
Dt

+(ei)a
fi(xa, t)−fi(xa−Dxa, t)

Dxa

=−
fi(x, t)−f

(0)
i (x, t)

ey
(15)

(ei)a < 0:

fi(x, t+Dt)−fi(x, t)
Dt

+(ei)a
fi(xa+Dxa, t)−fi(xa, t)

Dxa

=−
fi(x, t)−f

(0)
i (x, t)

ey
(16)

the amplification matrix is

(ei)a \ 0:

Gi, j=11−ca(1− exp(−ik Dxa))−
Dt
ey
2 dij+

Dt
ey
1“f (0)i
“r

“r

“fj
+
“f (0)i
“rua

“rua
“fj
2

(17)

(ei)a < 0:

Gi, j=11−ca(exp(ik Dxa)−1)−
Dt
ey
2 dij+

Dt
ey
1“f (0)i
“r

“r

“fj
+
“f (0)i
“rua

“rua
“fj
2

(18)

If the semi-implicit upwind difference scheme is applied to Eq. (1) as

(ei)a \ 0:

fi(x, t+Dt)−fi(x, t)
Dt

+(ei)a
fi(xa, t+Dt)−fi(xa−Dxa, t+Dt)

Dxa

=−
fi(x, t)−f

(0)
i (x, t)

ey
(19)

(ei)a < 0:

fi(x, t+Dt)−fi(x, t)
Dt

+(ei)a
fi(xa+Dxa, t+Dt)−fi(xa, t+Dt)

Dxa

=−
fi(x, t)−f

(0)
i (x, t)

ey
(20)
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the amplification matrix becomes

(ei)a \ 0:

Gi, j=

11−Dt
ey
2 dij+

Dt
ey
1“f (0)i
“r

“r

“fj
+
“f (0)i
“rua

“rua
“fj
2

1+ca(1− exp(−ik Dxa))
(21)

(ei)a < 0:

Gi, j=

11−Dt
ey
2 dij+

Dt
ey
1“f (0)i
“r

“r

“fj
+
“f (0)i
“rua

“rua
“fj
2

1+ca(exp(ik Dxa)−1)
(22)

4. STABILITY ANALYSIS FOR FINITE DIFFERENCE

LATTICE BOLTZMANN SCHEME

The first analysis shows stability boundary of the FDLBM, as func-
tion of the CFL number |ei | Dt/Dx and the relaxation time of the FDLBM
ey, for three kinds of the finite difference schemes. The mean flow velocity
and wavenumber are both vectors. Although there is not sufficient proof,
from the result for the case studied, the most unstable condition occurred
when the angle between the vectors were equal to zero. (4) The mean flow
velocity and wavenumber are assumed to be parallel to the horizontal axis.
When the relaxation time y=1, the slip velocities generated by various
schemes for the nonslip boundaries become zero. (18) When y is large, the
mean-free path becomes large and the Chapman–Enskog procedure breaks
down. (19, 20) The FDLBM relaxation time ey and the CFL number are from
0.00 to 2.00 in steps of 0.02 for every following analysis. In the LBM, when
using a unit lattice spacing, the highest resolvable wavenumber is equal
to p. (4) To compare with the LBM, (4) we analyze the numerical stability of
the FDLBM at the wavenumber less than p. The maximum stable mean
flow velocity of the conventional 7-velocity hexagonal LBM is about
0.39. (4) This value is obtained by selecting h=0.7. To compare with the
LBM, the subsequent simulation uses the distribution parameter, h=0.7.
The eigenvalues of Gi, j are determined usingMatlab Version 5.3.1.
Figure 2 shows the stability boundaries for various wavenumbers at

zero mean flow velocity. The stability boundaries depend on the relaxation
time, and the CFL number. The results for the explicit central difference,
for the explicit upwind difference, and for the semi-implicit upwind differ-
ence schemes, are shown in (a), (b), and (c), respectively. Figure 2a shows
that, as the BGK relaxation time is increased at constant CFL number,
the central difference LB scheme could be unstable. This is characteristic
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opposite to that of the conventional LBM. In the LBM, increment of the
relaxation time makes the LBM more stable. In our simulation of Poiseuille
flow, when the relaxation time was larger than unity, the numerical solu-
tion calculated by the central difference LB scheme diverged. As is evident
from Fig. 2a, when using the central difference scheme, the FDLBM
researchers need to take note of setting the parameter ey 4 1 or using small
CFL number for stable numerical simulation. Figure 2 shows that the
FDLBM eliminates the condition for the LBM: y > 0.5 independently of e.
This fact allows the FDLBM to simulate the high Reynolds number flow,
if CFL number is appropriately given. Figure 2a indicates that the central
difference scheme is the most unstable when the wave number equals to
0.50p. Figure 2b tells us that as the wavenumber becomes higher, the
stability region for explicit upwind difference becomes smaller. Figure 2c
shows that the increment of wavenumber makes the semi-implicit upwind
difference scheme less stable. This is an opposite result to Fig. 2b. It is dif-
ficult to obtain the single wavenumber that always makes all the FDLB
schemes the least stable.
Figure 3 shows the stability regions of the three kinds of finite differ-

ence schemes applied the mean flow velocities. In this simulation, we
analyze the numerical stability for all wavenumbers from p/20 to 19p/20
in steps of p/20. As the mean flow velocity is increased, the sizes of the
stability regions for every scheme reduce. We determine the limits of
maximum stable velocities for every scheme within the limits of CFL
number from 0.00 to 2.00, and relaxation time from 0.00 to 2.00. The limits
are obtained around 0.39, 0.43, and 0.43 for the central difference, for the
explicit upwind difference, and for the semi-implicit upwind difference
schemes, respectively. As Fig. 3a indicates, as the relaxation time is
increased, the central difference LB scheme becomes more stable for large
flow velocity when the CFL number is sufficiently small. It seems reason-
able to conclude that the central difference LB scheme possesses the
numerical stability limit against the Reynolds number, similarly to the
conventional LBM. On the other hand, as shown in Fig. 3b, c, as the
relaxation time is decreased, the upwind difference schemes become more
stable for large flow velocity. This is very useful property to simulate high
Reynolds number flow. Furthermore, comparison between Fig. 3b and c
makes it clear that the semi-implicit upwind difference LB scheme is more
stable than the explicit upwind difference LB scheme for high CFL number.

5. ARTIFICIAL VISCOSITY

In this section, we verify the effect of artificial viscosities for every dif-
ference scheme on numerical stability. To determine the artificial viscosity
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Fig. 2. Stability boundaries as function of Courant number and relaxation time. The wave-
number is less than p: (a) the explicit central difference; (b) the explicit upwind difference;
(c) the semi-implicit upwind difference.
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Fig. 2. (Continued).

for the explicit upwind difference scheme, taking Taylor series expansion of
fi(x, t+Dt) around fi(x, t) gives

fi(x, t+Dt)=fi(x, t)+Dt
“fi(x, t)
“t

+
Dt2

2
“
2fi(x, t)
“t2

+
Dt3

6
“
3fi(x, t)
“t3

+·· ·
(23)

Similarly, taking Taylor series expansion of fi(x−Dx, t), one gets

fi(x−Dx, t)=fi(x, t)−Dx
“fi(x, t)
“x

+
Dx2

2
“
2fi(x, t)
“x2

−
Dx3

6
“
3fi(x, t)
“x3

+·· ·
(24)

Substituting Eqs. (23) and (24) into the LHS in Eq. (15) gives

fi(x, t+Dt)−fi(x, t)
Dt

+(ei)a
fi(xa, t)−fi(xa−Dxa, t)

Dxa

=
“fi(x, t)
“t

+
Dt
2
“
2fi(x, t)
“t2

+(ei)a 1
“fi(xa, t)
“xa

−
Dxa
2
“
2fi(xa, t)
“x2a
2

=
“fi(x, t)
“t

+
Dt(ei)

2
a

2
“
2fi(xa, t)
“x2a

+(ei)a 1
“fi(xa, t)
“xa

−
Dxa
2
“
2fi(xa, t)
“x2a
2

=
“fi(x, t)
“t

+(ei)a
“fi(xa, t)
“xa

−
(ei)a Dxa(1−ca)

2
“
2fi(xa, t)
“x2a

(25)
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Fig. 3. Stability boundaries of the FDLBM applied the mean flow velocity to: (a) the explicit
central difference; (b) the explicit upwind difference; (c) the semi-implicit upwind difference.
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Fig. 3. (Continued).

Comparison of Eq. (1) and Eq. (25) reveals that the discretization generates
the new term (ei)a Dxa(1−ca)/2. This additional term is a coefficient on
the second derivative of fi with respect to x, and is regarded as artificial
viscosity or numerical diffusion. (21) Likewise, the artificial viscosities are
given by −(ei)

2
a Dt/2 and by (ei)a Dxa(1+ca)/2 for the central difference

and for the semi-implicit upwind difference schemes, respectively.
Schemes could be unstable by influence of negative artificial viscosity.

The time step Dt should be small to lessen the effect of the negative artifi-
cial viscosity, −(ei)

2
a Dt/2, on the central difference scheme. This require-

ment of time step for the central difference scheme is consistent with the
necessity of small CFL number |ei | Dt/Dx shown in Fig. 2a. Saying it dif-
ferently, when using the central difference scheme, the FDLBM researchers
cannot use large time step for stable numerical simulation.
For the explicit upwind difference scheme, when CFL number ca is larger

than unity, the artificial viscosity (ei)a Dxa(1−ca)/2 is negative. To make the
artificial viscosity positive and ensure numerical stability, it is necessary that
the CFL number is smaller than unity. This requirement is compatible with
the condition derived from von Neumann stability analysis, shown in Fig. 2b,
that is, the maximum CFL numbers in stability regions are always smaller
than unity. The standard definition of the Reynolds number Re for the
hexagonal lattice is

Re=
LU
m
=
4LU
rey

(26)
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where L=N Dx is characteristic length, N is the number of lattice spaces,
and U is characteristic flow velocity. Equation (26) indicates that the BGK
relaxation time should be small or flow velocity should be large to obtain
high Reynolds number. As is evident from Fig. 3b, the small CFL number
is necessary for the explicit upwind difference scheme to stably simulate
fluid dynamics with small BGK relaxation time and with large flow veloc-
ity. The small CFL number ca brings about large artificial viscosity
(ei)a Dxa(1−ca)/2 as well, and ensures numerical stability. The explicit
upwind difference scheme with appropriate CFL number is suitable for
simulation of high Reynolds number flows.
For the semi-implicit upwind difference scheme, the artificial viscosity

(ei)a Dxa(1+ca)/2 is always positive. This large nonzero artificial viscosity
degrades accuracy of the scheme, however, improves numerical stability. At
the same CFL number, the artificial viscosity for semi-implicit upwind dif-
ference scheme is larger than that of the explicit upwind difference scheme.

6. CONCLUSION AND DISCUSSION

We analyzed the numerical stability of the FDLBM for the central
difference scheme, for the explicit upwind difference scheme, and for the
semi-implicit upwind difference scheme by means of von Neumann stability
analysis. The stability boundary was shown as function of the CFL
number, the BGK relaxation time, the mean flow velocity, and the wave-
number. The analysis indicated the following results: (1) The FDLBM
eliminated the condition: y > 0.5, and is capable of simulating the high
Reynolds number flow, when the CFL number is appropriately modulated,
(2) as the BGK relaxation time is increased at constant CFL number, the
central difference LB scheme could be numerically unstable, (3) the limits
of maximum stable velocity are obtained around 0.39, 0.43, and 0.43 for
the central difference, for the explicit upwind difference, and for the semi-
implicit upwind difference schemes, respectively, (4) the upwind difference
scheme is suitable for simulation of high Reynolds number flow, because it
becomes more stable for high flow velocity, as the relaxation time is
decreased.
Through the Taylor series expansion, the artificial viscosities are given

by −(ei)
2
a Dt/2, (ei)a Dxa(1−ca)/2, and (ei)a Dxa(1+ca)/2 for the central

difference, for explicit upwind difference, and for the semi-implicit upwind
difference schemes, respectively. The investigation of artificial viscosities
elucidated the following results: (1) The requirements for artificial viscosity
is consistent with the conditions for numerical stability derived from von
Neumann stability analysis, (2) the central difference scheme should adopt
small time step for stable numerical simulation due to the negative artificial

570 Seta and Takahashi



viscosity, (3) for the explicit upwind difference scheme, to make the artifi-
cial viscosity positive, the CFL number should be smaller than unity, (4) to
stably simulate high Reynolds number flows with explicit upwind differ-
ence scheme, the artificial viscosity becomes large, because the CFL
number must be small, (5) for the semi-implicit upwind difference scheme,
the large nonzero artificial viscosity degrades accuracy of the scheme,
however, improves numerical stability.
These results substantiate that semi-implicit upwind difference scheme

is the most numerically stable of all, and is capable of stably simulating
flow dynamics with CFL number larger than unity. Actually we have con-
firmed that the semi-implicit upwind difference scheme could stably
simulate the phase transition, although the CFL number is larger than
unity.
We may, therefore, reasonably conclude that the upwind difference LB

scheme is more stable than the conventional LBM, on the ground that it
meets the high Reynolds number flow simulation and its limit of the
maximum mean flow velocity is larger than that of the LBM. On the other
hand, the conventional LBM includes the discretization error into viscous
terms, resulting in second order accuracy both in space and time, (13) while
the upwind difference LB scheme is first order accuracy. The shear viscos-
ity for the LBM is given by m=r(y− 12)/4. The first and second parts in the
viscosity are equivalent to the physical viscosity and to consequence of
allowing for discretization error, respectively. Therefore, it is not necessary
to consider artificial viscosity in the LBM. The LBM obtains the maximum
value at small viscosity compared to the central difference LB scheme. The
maximum stable flow velocity of the LBM equals to that of the central dif-
ference LB scheme (i.e., 0.39). The analysis also elucidated that the con-
ventional LBM is an excellent scheme to get the second order accuracy.
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